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Abstract

The use of a digital computer to convert a set of
measured standing wave null positions versus sliding
short positions to an equivalent circuit for a discon-
tinuity in a uniform waveguide is discussed. This
method when employed to interpret data indicates the
presence of systematic or random errors and averages
the accumulated information directly.

General Considerations

A discontinuity in a waveguide (Fi re la) can be
Frepresented by the equivalent circuit described in

Figure lb. The unknown quantities to be determined
are the lengths, L1 and L2, and the admittance, y,
which are dependent on the geometry of the guide, the
discontinuity, the choice of reference plane, and the
polarization of wave vector. In the following discus-
sion, a discontinuity that is symmetrical about the
reference plane will be assumed. Nevertheless, the
technique to be described will be applicable to an
asymmetrical discontinuity. The lengths, L‘s, that
will be found, include the foreshortening or lengthening
of the guide produced by the discontinuity y. It is read-
ily seen that the placing of the reference plane at a
point other than the plane of symmetry will result in
the same admittance, y, but will cause a correspond-
ing shift in the lengths, L ‘s.

The measurements are made with the arrangement
illustrated in Figure 2a. For each short position, J,
the corresponding standing wave null position K, is
measured. A typical plot of data might appear as
shown in Figure 2b. The true curve probably would
not pass through all the measured points because of
measurement inaccuracies. The objective here is to
determine those values of y and L’s that ‘best fit” the
experimental data. The peak-to-peak amplitude, A, of
the curve indicates the magnitude of y, whereas the
lengths, L’S, shifts the mean axis vertically and curve
laterally. 2 The curve will make one cycle for each
half wavelength movement of the short.

The ‘best fitting” process is described next and is
based on the “method of least squares” technique
discussed in the literature. 3

Method of Least Square

For a given short position, the voltage standing wave
pattern (VSWP) might appear as shown in Figure 3a. It
is seen that the VSWP is discontinuous across the
plane of symmetry due to the presence of the discon-
tinuity. If, however, the VSWP on the source side is
imagined as continuous acress the discontinuity, the
apparent null position just to the right of the discontin-
uity is dieplac ed from the first actual V SWP null. The
shift, Dm( i), which is obtained through measurement
is defined as:

Din(i) = J(i) - K(i) (1)

where i denotes the ith value out of N measurements.

On the other hand, the shift CaU also be calculated if
y, L1 and L2 were known, as well as the measured

J(i). To distinguish from Din(i), let us denote it by

De(i). Referring to Figure 3b, and assuming the cir-
cuit is dissipationless and the short has a unity re-
flection coefficient, it is easy to show that De(i) is an
explicit function of y, L1, L2 and J(i).

[
De(i) = f y, Ll, L2, J(i) 1 (2)

1 +[tanp (J(i) -L1][y-Cot F (J(i) +L2~
=&tan-l

P [y- Cot ~ (J(i) +L2)]- [tanp (J(i)=] ‘3)

where P = 2r/Ag, h ~ is the guide wavelength

Y = Y/Y. is the normalized susceptance.

The residuals, E(i), are defined as the difference
between Din(i) and De(i); i.e.

E(i) = Dm(i}-- De(i). (4)

Using the Taylor’s Series expansion, we may
approximate De(i) as

[ 1De(i) = f(~, fll, L;, J(i)) + f A +f AL1 -t-fL AL2
YYL1 2

[
+ l/2 ~W(AY)2 +fL1L$AL1)2 +fL21,2(AL2)2 1

[
+f AyAL1 + fL L

YLI
AL1AL2 + f

12 =’2YAL2AY;

+ higher order terms in Ay and AL’s. (5)

‘here‘Y’ ‘YY’ . . . etc. are the first and second partial
derivatives of f(y, L1, L2, J(i) ) and are funckions of
J(i); ~, L; and L; are approximate values obtained
initially by an estimate; and Ay, AL1 and AL2 are cor-
rections such that the actual values of y, L1 and L2
are:

Their values are to be found so that the sum of the
squares of the residuals is a minimum, which results
in the following set of normal equations:
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To develop the equations of (7), the series of equa-
tion (5) is truncated, which will lead only toanapprox-
imate determination of the circuit parameters y, L1
and L2. Ifthese are not sufficiently accurate, they
might be improved by being used as the next estimate
andrepeating the process of equations (4) through (7)
until a satisfactory result is attained. It was found
that the neglect of the second andhigher order terms of
(5), frequently led to a slow convergence and sometimes
no convergence at all. Including the second order
terms greatly improved the rate and the range of con-
vergence. The complexity of the equations (7)
increased rapidly with the order of approximation of
equation (5). Therefore, it was decided to truncate (5)
after the second order.

Substituting the second order approximation of E(i)
and its derivatives into equation (7) and rearranging,
yields matrix equation ‘~

where

N N N

E1=~fy ; E2=~fL ; E3=~fL

1 11 12

(8)

Program and Results

A computer program was written to implement the
preceding analysis, which is sufficiently fast and

economical to run on a time-shared terminal. For
example, each iteration of a 12-point data set required
approximately 2 CPU seconds with IBM’s Call 360
Basic Time Share System. The number of iterations
required varied widely, i. e. , 3 to 20, depending on the
accuracy of the initial guess and on the consistency of
the measured data. The determination of the small
discontinuities generally converged much more slowly.
If an inaccurate initial guess was used or the data4was
too inconsistent, the process would not converge.
This fact might be an advantage since it prevents one
from accepting poor data.

As an illustration, two typical comPuter Printouts
are reproduced and presented in Figure 4, correspond-
ing to different input data. The number of iterations is
different in each case, indicating the effect of initial
guess accuracy and measured data consistency on the
rate of convergence.
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Figure 3

INITIAL VALUES SB, L1. L28 -0.053 0.200 -o .Qoo

1NDEX RES I DUAL

1. -0.012
2 -0.020
3 -0.015

4 -0.014

5 -0.007

6 -0.009

7 -0.004
8 -0.005
9 -0.010

10 -0.011
11 -0.009

SRROR: M2AN$ -1 .05535 E- IJ!2
:ORRJICT B, L1, L2 BY: -0.0094

WV VALUES: B, L1, L2! -0.062

SEco.n IERA710N

UzW VALUES *B, LI, L2 : -0.054

THIRD ITERATION

N~ VALUES !B, L1, L2: -0.054

Fwwm lERAT,ON

1NDEx RES lDUAL

1 -0.001
2 .-0.006
3 -0.000

4 -0.002

5 0.002
6 -0.003
7 0 .D02
8 0.002
9 0.001

10 0.003
11 0.005

2RROR : MEAN : 2.41467 E-07
CORRECT BJL1, L2 BY: 0.0000

N2V vALuES:B, L1>L2 : -0.054

RMS x 4.36954E-03
-0.0768 0.0892

0.123 -0-111

0.123 -0.113

0.125 -0.115

RMS : 3.04466E-03

0.0000 -0.0000

0.125 -0.115

(a) Computer Printout, Case I

INITIAL VALUES: B> L1, L2: -0.013 -0.400 0.300

INDEX RESIDUAL
1 -0.072
2 -0.075
3 -0.096
4 -0.099
5 -0.095
6 -0.085
7 -0.057
2 -0.068

.9 -0.087
10 -0.092

ERROR: MEAN: -$3.27019E-02 RMS : 1 .32369E-02

:ORRECT B,LI ,L2 BY: -0.0149 -0.0922 0.1787

!EW VALUES: B, L1, L2: -0.028 -0.492 0.479

SECOND ITPRAT,ON

L!EW VALUES:B, L1 ,L2 : -0.055 ‘0.070 0.064

THI m ITERATION

VEW VALUES: B> L1, L2 : -0.052 0.057 -0,060

FOURTH ITERA7, ON

VEW vALUES :B>LI s L2 : -0.051 0.107 -0.110

Fr,m ITERATION

NEw VALIJES : B , L 1, L2 : ‘0.050 0.113 -0.116

SIXTH ITERATION

INDEX REs 1 DUAL
1 0.000
2 -0.005
3 -0.014
4 0.001
5 -0.004
6 ‘0.007
7 0.013
8 0.006
9 0.002

10 0.007
ERROR : MEAN: 8.68738S-07 RMS : 7.34656E-03
:ORRECT B,L1 ,L2 BY: 0.0000 0.0002 -0.0002

VEW VALUSS:B, L1, L2: -0.050 0.113 ‘0.116

(b) Computer Printout, Case 11[

Figure 4
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Notes
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CONTRIBUTING TO MICROWAVE PROGRESS THROUGH ADVANCED COMPONENTS 10KH T012GH COUPLERS HYBRIOJUNC710NS

INSTRUMENTATION, COMPONENTS ANO DEVICES. POWER DIVIDERS, MIXERS, PHASE SHIFTERS, ATTENUATORS, AND

CUSTOM-ENGINEERED COMPONENTS
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